Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study
نویسندگان
چکیده
We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 ◦C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film must be chiefly responsible for the photo-generated current of the structure and not the underlying crystalline silicon substrate. In this article we use detailed electrical-optical modelling to calculate the minimum thickness of the epitaxial silicon layer for this to happen. We have also investigated by modelling the influence of the a-Si:H/epitaxial-Si and epitaxial-Si/c-Si interface defects, the thickness of the epitaxial silicon layer and its volume defect density on cell performance. Finally by varying the input parameters and considering various light-trapping schemes, we show that it is possible to attain a conversion efficiency in excess of 13% using only a 5 micron thick epitaxial silicon layer.
منابع مشابه
Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD
We report on heterojunction solar cells whose thin intrinsic crystalline absorber layer has been obtained by plasma enhanced chemical vapor deposition at 165°C on highly doped p-type (100) crystalline silicon substrates. We have studied the effect of the epitaxial intrinsic layer thickness in the range from 1 to 2.4 μm. This absorber is responsible for photo-generated current whereas highly dop...
متن کاملA Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates
The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...
متن کاملEpi-n-IZO thin films/Æ1 0 0æ Si, GaAs and InP by L-MBE––a novel feasibility study for SIS type solar cells
High quality epitaxial indium zinc oxide (heavily indium oxide doped) (epi-n-IZO) thin films were optimized by laser-molecular beam epitaxy (L-MBE) i.e., pulsed laser deposition (PLD) technique for fabricating novel isoand hetero-semiconductor–insulator–semiconductor (SIS) type solar cells using Johnson Matthey ‘‘specpure’’grade 90% In2O3 mixed 10% ZnO (as commercial indium tin oxide (ITO) comp...
متن کاملStudy of Composition and Optical Properties of Chemically Deposited Pd-xSb2S3 Thin Films
The study reports on the effects of different concentration of palladium impurities on the compositional and optical properties of Palladium Doped Antimony Sulphide (Pd-xSb2S3) thin films grown by the chemical bath deposition method. The films were grown at room temperature and other deposition conditions such as the bath temperature, pH, complexing agents were kept constant. The concentration ...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کامل